High resolution age-structured mapping of childhood vaccination coverage in low and middle income countries.

Thursday, 28th of June 2018 Print

Vaccine. 2018 Mar 14;36(12):1583-1591. doi: 10.1016/j.vaccine.2018.02.020. Epub 2018 Feb 14.

High resolution age-structured mapping of childhood vaccination coverage in low and middle income countries.

Utazi CE1 Thorley J2 Alegana VA3 Ferrari MJ4 Takahashi S5 Metcalf CJE5 Lessler J6 Tatem AJ3.

Author information

Abstract

BACKGROUND:

The expansion of childhood vaccination programs in low and middle income countries has been a substantial public health success story. Indicators of the performance of intervention programmes such as coverage levels and numbers covered are typically measured through national statistics or at the scale of large regions due to survey design administrative convenience or operational limitations. These mask heterogeneities and coldspots of low coverage that may allow diseases to persist even if overall coverage is high. Hence to decrease inequities and accelerate progress towards disease elimination goals fine-scale variation in coverage should be better characterized.

METHODS:

Using measles as an example cluster-level Demographic and Health Surveys (DHS) data were used to map vaccination coverage at 1 km spatial resolution in Cambodia Mozambique and Nigeria for varying age-group categories of children under five years using Bayesian geostatistical techniques built on a suite of publicly available geospatial covariates and implemented via Markov Chain Monte Carlo (MCMC) methods.

RESULTS:

Measles vaccination coverage was found to be strongly predicted by just 4-5 covariates in geostatistical models with remoteness consistently selected as a key variable. The output 1 × 1 km maps revealed significant heterogeneities within the three countries that were not captured using province-level summaries. Integration with population data showed that at the time of the surveys few districts attained the 80% coverage that is one component of the WHO Global Vaccine Action Plan 2020 targets.

CONCLUSION:

The elimination of vaccine-preventable diseases requires a strong evidence base to guide strategies and inform efficient use of limited resources. The approaches outlined here provide a route to moving beyond large area summaries of vaccination coverage that mask epidemiologically-important heterogeneities to detailed maps that capture subnational vulnerabilities. The output datasets are built on open data and methods and in flexible format that can be aggregated to more operationally-relevant administrative unit levels.

Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

KEYWORDS:

Bayesian geostatistics; Coverage heterogeneities; Demographic and Health Surveys; Measles vaccine

PMID: 29454519 DOI: 10.1016/j.vaccine.2018.02.020

 

Special Postings

;

Highly Accessed

Website Views

1828450